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Abstract
The aim of this contribution is to present a general scheme for obtaining
graviton spectra from modified gravity theories, based on a theory developed
by Grishchuk in the mid 1970s. We try to be pedagogical, putting in order
some basic ideas in a compact procedure and also giving a review of the current
trends in this arena. With the aim to fill a gap for the interface between quantum
field theorists and observational cosmologist in this matter, we highlight two
interesting applications to cosmology: clues as to the nature of dark energy; and
the possibility of reconstruction of the scalar potential in scalar–tensor gravity
theories.

PACS numbers: 04.30.−w, 04.80.Nn

1. Introduction

There should be a cosmological background of gravitons whose existence is predicted by
many metric theories of gravity, including Einstein’s general relativity theory. We will sketch
the general method for computing the graviton production arising from a general theory
of gravity—not specifically Einstein’s theory—keeping the formalism as much general as
possible in order to be applicable to whatever theory of gravity of interest. We will end by
highlighting two interesting applications to cosmology.

2. Graviton’s spectrum computation

We will focus our attention on the graviton production in different transition epochs during
the universe evolution, with gravity described by a general Lagrangian density, and the metric
of spacetime described by the usual Friedman–Lemaître–Robertson–Walker (FLRW) line
element. In this context, the generation of gravitons arises from the amplification of vacuum
fluctuations during the transition epochs. This mechanism was first discussed by Grishchuk
in the middle 1970s [1], and Bogoliubov established a formalism in this subject named after
him (see [2] for details).
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We will use, throughout this paper unless otherwise stated, physical units 8πGN = c =
h̄ = 1.

We start from a general Lagrangian in four dimensions for maximally symmetric
spacetimes, where it is always possible to put the Riemann Tensor �αβµν in terms of the
scalar curvature � alone so that

S =
∫

d4x
√−g{f (�, ∂µ�,� �, gµν) + LMatter}. (1)

From this, the general procedure for computing background metric perturbations (i.e.,
gravitons) can be either to perturb directly the action to second order in the background metric
perturbation, or to derive first the equations of motion and perturb them after to first order in
the metric perturbation. We will proceed by the second method and we will assume also a
maximally symmetric spacetime so that our Lagrangian is a function of the Ricci scalar alone.
In this case, the Field equations are

f ′(�)�αβ − 1
2f (�)gαβ = f ′(�);µν(gαµgβν − gαβgµν) + T̃ Matter

αβ (2)

where the prime “ ′”, unless otherwise stated, indicates the derivative with respect to the Ricci
scalar �.

In the case f (�) = � + 2�, we recover general relativity with the cosmological constant
�. It is also worthwhile to point out that in order to have constant curvature solutions
R = R0, the Lagrangian f (�) must satisfy the condition f ′(�0) = 2f (�0)/�0 (the on-shell
condition).

In the case of FLRW metrics the general action equation (1) can be recast into an action
whose field equations are a generalization of the usual Friedmann–Lemaître field equations in
general relativity, using the scale factor a and the Ricci scalar � as the canonical variables, in
a way that is common use in canonical quantization techniques,
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for the accelerated and decelerated behaviours: ρTotal + 3PTotal < 0 ⇒ Acceleration and
ρTotal + 3PTotal > 0 ⇒ Deceleration, where we define the total pressure and density as
PTotal = PMatter + PCurvature and ρTotal = ρMatter + ρCurvature, where
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f ′(�)

{
2

(
ȧ
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From that one defines the so-called Barotropic index w as the ratio between the pressure and
the density for each the matter and the curvature terms.

As many observations indicate—high redshift supernovae surveys; CMB anisotropies;
Sunyaev–Zeldovich/ x-ray methods, and others—at the present epoch, the Universe is
experiencing a period of accelerated expansion. Assuming that all matter components
contribute with a non-negative pressure, then we have that ρCurvature > 1

3ρTotal.
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We will consider a spatially flat FLRW metric (the relation between cosmic time t and
conformal time η is given by dt = a dη):

ds2 = dt2 − a2(t) d−→x 2 = a2(η)[dη2 − d−→x 2]. (7)

To first order, a transverse, traceless metric perturbation of a background metric that
represents sourceless and weak gravitational waves can be described as

hij (x) =
∑

l:1,2
[A(

−→
k , l)hij (x,

−→
k , l) + A+(

−→
k , l)h∗

ij (x,
−→
k , l)] d3k (8)

where x ≡ (η,−→x ); i, j : 1, 2, 3 are the spatial indices; l: 1, 2 indicate the two polarization
states for the gravitational wave; + denotes the transposed and ∗ indicates complex conjugation.
In the above expression the following functions are defined:

hij (x,
−→
k , l) ≡ h(x,

−→
k )εij (

−→
k , l) h(x,

−→
k ) ≡

√
16πg

(2π)
3
2

µ(k, η)

R(η)
ei−→k −→x ;

R ≡ a

[
∂f (�)

∂�
] 1

2

.

(9)

The constant g appearing in the above is a generalized gravitational constant reducing to the
usual GN in the case of general relativity. We point out that, also in general relativity, the
function R reduces to R = a, as f (�) ∝ �. The functions εij (

−→
k , l) are polarization tensors

satisfying εij (
−→
k , l)εij (

−→
k , l′) = 2δll′ and εij (

−→−k, l) = εij (
−→
k , l). The functions µ(k, η) are

called mode functions. Inserting the metric perturbation equation (8) into the generalized
equations of motion, one arrives at an equation for these mode functions,

µ′′(k, η) +

[
k2 − R′′(η)

R(η)

]
µ(k, η) = 0, (10)

which reminds us of the Schrödinger equation; here the prime “′” indicates derivatives with
respect the conformal time η. It is usual to define the following quantity µ(k,η)

R(η)
≡ Y (k, η).

In the classical theory, the functions A(
−→
k , l) and A+(

−→
k , l) would be complex

constants. In the quantized theory they are annihilation and creation operators respectively,

satisfying the usual canonical commutation relations [A(
−→
k , l), A+(

−→
k ′ , l′)] = δ(

−→
k ,

−→
k ′ )δll′

and [A(
−→
k , l), A(

−→
k ′ , l′)] = 0 = [A+(

−→
k , l), A+(

−→
k ′ , l′)].

We use the following conditions on the normalization factor and on the Wronskian of the
solutions µ(k, η) for equation (10), Normalization factor = (2π)−3/2 and µ(k, η)µ′∗(k, η) −
µ∗(k, η)µ′(k, η) = i, so that the canonical commutation relations for the field hij (x) and
its conjugate momentum imply the usual commutation relations previously stated for the
operators A(

−→
k , l) and A+(

−→
k , l).

In order to solve equation (10), we need first to solve the equations of motion determined
by the system of equations (3), (4) and (10) given the equation of state P = P(ρ), from
which we obtain the scale factor a, which is the input for the mode equation. At any transition
epoch—whenever the equation of state of the system varies—the scale factor will in principle
be different from the value it had before the transition started; thus the mode equation has to
be stated for each transition epoch.

We can formally write down the former as follows: we denote by �ηr the transition
epoch; we will assume that prior to a time ηr − �ηr , the pressure and density are related by
P(r−1) = F(r−1)(ρ) for η < ηr −�ηr ; during the transition, the form of the function F(r−1)(ρ)

changes until it reaches another stable form, F(r)(ρ), so that Pr = F(r)(ρ) for η > ηr + �ηr .
One can relate the functions Y before and after the transition by means of the so-called
Bogoliubov coefficients, α(r)(k) and β(r)(k), and, from the condition on the Wronskian of the
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solutions µ(k, η), it follows that they obey |α(r)(k)|2−|β(r)(k)|2 = 1, so that, for η < ηr −�ηr

and η > ηr − �ηr , one has Y(r−1)(k, η) = α(r)(k)Y(r)(k, η) + β(r)(k)Y ∗
(r)(k, η).

The creation and annihilation operators prior to and after the transition for each
polarization mode can also be related through these coefficients: inserting this last relation
into the definition for the h(x,

−→
k ) given in equation (9), and using equations (8), (9)

for the stages (r − 1) and (r), one finds the following relation before and after the
transition respectively (we omit the label l for the two polarization states): A(r−1)(

−→
k ) =

α∗
(r)(k)A(r)(

−→
k ) − β∗

(r)(k)A+
(r)(−−→

k ) and A(r)(
−→
k ) = α(r)(k)A(r−1)(

−→
k ) + β∗

(r)(k)A+
(r−1)(−−→

k ).
Thus, the vacuum state of the region (r − 1), denoted by |0(r−1)〉, will be annihilated by
A(r−1)(

−→
k ): A(r−1)(

−→
k )|0(r−1)〉 = 0 ∀−→

k but not by A(r)(
−→
k ): A(r)(

−→
k )|0(r−1)〉 = β∗

(r)(k)A+
(r−1)

(−−→
k )|0(r−1)〉∀−→

k , and vice versa. And this is the key to the whole issue: we have spontaneous
creation of particles arising from the fact that the vacua before and after the transitions are
different.

In order to obtain the above results, two approximations have been considered: the
adiabatic (as opposed to the Hamiltonian diagonalization approximation) and the sudden
transition approximation (see [2] for a complete discussion on both).

From the above, one defines a number operator for the mode
−→
k at stage r, N(r)(

−→
k ) ≡

A+
(r)(

−→
k )A(r)(

−→
k ) so that we have 〈0(r−1)|N(r)(

−→
k )|0(r−1)〉 = |β(r)(k)|2. This expression

represents spontaneous creation of gravitons from an initial vacuum, but can be generalized
to the case of an initial state not being a vacuum (stimulated creation).

One can also relate the Bogoliubov coefficients, and thus, the annihilation and creation
operators A and A+, of stages corresponding to different transition epochs; this is useful
whenever we are dealing with more than one transition. The relation comes in a recursive
expression: αT r(k) = α(r)(k)αT r−1(k) + β∗

(r)(k)βT r−1(k) and βT r(k) = β(r)(k)αT r−1(k) +
α∗

(r)βT r−1(k) ([3] and [4]).
Once one has solved the mode equation (10), it is possible to find a final general expression

for the Bogoliubov coefficients imposing the continuity of the solution and of its first derivative,
at each transition epoch. This final expression is given in terms of known and unknown
functions µ(tr) and R(tr) during the transition epoch, but, with the help of the sudden transition
approximation one can recast these expressions in terms only of known functions; thus

α(r)(k) = i

[
R(r)(ηr)

R(r−1)(ηr)
α

(0)

(r) (k) +
µ(r−1)(k, ηr)µ

∗
(r)(k, ηr)

R(r−1)(ηr)
δr

]
(11)

β(r)(k) = i

[
R(r)(ηr)

R(r−1)(ηr)
β

(0)

(r) (k) − µ(r−1)(k, ηr)µ(r)(k, ηr)

R(r−1)(ηr)
δr

]
(12)

where

α
(0)

(r) (k) = µ∗
(r)(k, ηr)µ

′
(r−1)(k, ηr) − µ(r−1)(k, ηr)µ

∗′
(r)(k, ηr)

β
(0)

(r) (k) = µ(r−1)(k, ηr)µ
′
(r)(k, ηr) − µ(r)(k, ηr)µ

′
(r−1)(k, ηr)

δr = R′
(r)(ηr) − R(r)(ηr)

R(r−1)(ηr)
R′

(r−1)(ηr).

These expressions are completely general with respect to the underlying theory; they are
also general in the sense that there is neither any restriction on the actual form of µ(k, η)

and R(η), apart from the sudden approximation. This latter means that the equations will fail
whenever T � �tr since in that case these short period waves will be sensitive to the details
of the transition. There is also an alternative approach to the one outlined here, given in [5, 6].

Once we have obtained the Bogoliubov coefficient β, we can compute the number
of gravitons by means of the number operator Nk: one obtains the so-called differential
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energy density associated with gravitons whose frequency lies in the range between w and
w + dw, at any time η and for waves with λ � λH , with λH being the Hubble length, as
dρG = Pg(w) dw = 2h̄w w2

2π2c3 dw〈Nw(k)〉, where we have momentarily restored units; the
factor of 2 accounts for the two independent polarization states and 〈Nw(k)〉 = |β(r)(k)|2 in
the spontaneous case. The units of Pg(w) are erg cm−3 Hz−1. Integrating the above, one

obtains the total energy density ρG(η) = ∫ wMax(η)

wmin(η)
Pg(w) dw where wmin(η) and wMax(η) are

appropriate cutoff limits (see [3, 4, 7] for discussions on the topic).
It is worthwhile to point out that in the FLRW flat metric, in the cases where the behaviour

of R defined in equation (9) is of the form R ∼ ηα—in fact, most cases of interest—the solutions
to the mode equation (10) are given in terms of the Hankel functions H(1) and H(2), so that
the above general expressions can be greatly simplified [8]. In another arena, a remarkable
and most interesting feature was pointed out by L P Grishchuck [9]: the analogy between the
mechanism of primordial gravitons production and the phenomena of squeezing in quantum
optics, as he noticed that gravitons of relic origin will come in squeezed states, as much as
photons do in quantum optics.

3. Application to cosmology

Many observations mentioned before support the existence of the current state of accelerated
expansion. Also, different models arise with the aim of explaining the phenomena, among
others, the cosmological constant itself, quintessence, and modified or extended gravity
theories already mentioned. One recent proposal in this latter line of research are the so-
called phantom scalar–tensor gravity theories [10].

Most f (�) theories aim at explaining the current speed up as a purely gravitational effect,
motivated by the fact that positive powers of the curvature added to the standard Einstein–
Hilbert Lagrangian may give rise to early-time inflation; thus, in the same way, one aims at
explaining the current period of accelerated expansion by the inclusion of terms growing at
small values of the curvature (present); this can be accomplished with terms with negative
powers of the Ricci scalar. What is remarkable is that these terms may be expected from some
time-dependent compactifications of string/M-theory [12].

Thus, there is currently a huge effort in the search of the appropriate form of these terms
and there has recently been published a series of important papers [13] establishing the correct
form for them, with the important result that, in order for the theory to be compatible with
solar system tests, the gravity Lagrangian should be nearly linear in � with the possible
nonlinearities bounded by quadratic terms at most:

� − 2� − l2�2

2
� f (�) � � − 2� +

l2�2

2
(13)

(l2 determines the scale over which nonlinear corrections are relevant).
Our group is currently working in the derivation of graviton spectra from such theories.

These graviton spectra can help to shed some light on modified gravity theories once the
current generation of gravitational wave detectors will be operating.

There is another interesting application of cosmological graviton production: the
reconstruction of the scalar potential of scalar–tensor gravity theories, directly from
observations of the graviton emission.

These can be realized by means of the so-called massive binary black hole inspirals
(MBBH inspirals), which are potentially powerful standard candles for gravitational waves,
playing the same role as type Ia supernovae are for electromagnetic waves: observations of
their intensity will give the luminosity distance DL and the complementary observation of
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the electromagnetic counterpart can lead to the distance–redshift relation, which gives the
expansion history of the universe and, thus, clues as to the origin of the so far elusive dark
energy.

These MBBHs sources arise from mergers of galaxies and pregalactic structures at high
redshift and have been already observed (ex. NGC 6240). LISA, the laser interferometer space
antenna, a joint ESA–NASA mission scheduled to be launched within the timeframe of 2015,
is expected to measure at least several events of this type [14]. Through this DL(z) relation
then, as shown by Saini, Raychaudhury and Starobinsky [15], one can reconstruct the form
of the scalar potential V (σ) of a general scalar–tensor gravity theory, and also its equation of
state P/ρ = w, thus in a model-independent way. This constitutes a way for contrasting the
results of the theoretical spectra with observations allowing us to discard and/or fine-tune the
parameters of the theory. There also exists a complementary model-independent method of
diagnosis of dark energy, called statefinder [16].
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